Rapid Enantioselective Access to Des-AB-trienic Corticosteroids via Intramolecular Cycloaddition

Hideo Nemoto, Atsushi Satoh and Keiichiro Fukumoto*
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract

A short synthesis of an enantiomerically pure des- $A B$-trienic steroid 11 has been achieved by thermolysis of the optically active alkenic benzocyclobutene 9 obtained by selective nucleophilic addition of an isopropenyl group to the chiral epoxide 5 as a key step.

Because of their medicinal importance, corticosteroids have been much studied. ${ }^{1}$ Recently, an efficient method for introducing dihydroxyacetone ${ }^{2}$ and oxygen substituents ${ }^{3}$ at C-17 and C-11, respectively, has given access to compounds with considerable physiological activity. This, together with the fact that analogous compounds lacking the usual tetracyclic steroid structure (e.g., 16,17-secosteroids or compounds having neither ring D nor A of the steroid nucleus) have recently attracted much attention because of their hormonal or antihormonal activities, ${ }^{4}$ has stimulated us to explore an effective methodology for the enantioselective synthesis of des- $A B$-trienic steroids having dihydroxyethyl substituents at $\mathrm{C}-17^{5}$ suitable for generating the dihydroxyacetone moiety of corticosteroids. Our synthetic strategy for compound 11 is characterized by the onestep creation of the B, C and D rings in a stereoselective manner by an intramolecular $[4+2]$ cycloaddition of the alkenic o quinodimethane 10 generated in situ by thermolysis of the alkenic benzocyclobutene 9 which is effectively prepared by a regio- and stereo-selective epoxide ring-opening reaction of the chiral epoxide 5 with an isopropenyl group. Herein we describe our results. \dagger

The benzocyclobutenyl aldehyde $1,{ }^{5 a}$ easily obtainable in large quantities from 1-cyano-4-methoxybenzocyclobutene, ${ }^{6}$ was subjected to a Wadsworth-Emmons reaction under Masamune's modified procedure ${ }^{7}$ to give the unsaturated ester 2 selectively (94%); this, on reduction with diisobutylaluminium hydride (DIBAH), afforded the alcohol 3 (93%). Asymmetric epoxidation of the allyl alcohol 3 was effected by following the Sharpless procedure to give the chiral epoxy alcohol 4 (91%) with a high degree (97% e.e.) of enantiomeric excess. \ddagger Silylation (99%) of the epoxy alcohol 4 followed by nucleophilic addition of the isopropenyl group to the resulting epoxy silyl ether 5 afforded the addition products 6 and 7 in the ratio of $1: 3(89 \%)$ in a moderate regio- and high stereo-selective manner.§ The major product 7, which was easily separated by silica gel column chromatography from the minor product 6 , was then deprotected to give the diol $8(95 \%)$; this on protection afforded the acetonide $9(84 \%)$. Finally, thermolysis of 9 furnished the

[^0]trans-fused des- $A B$-trienic steroid 11 (98%), the goal of our synthesis $\left\{[\alpha]_{\mathrm{D}}^{20}-1.4\right.$ (c $\left.\left.1.01, \mathrm{CHCl}_{3}\right)\right\}$ as a single product which was identical with the authentic enantiomer ${ }^{5 c}$ of 11 in all aspects including ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ and $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ spectra and optical rotation \{opposite sign and almost the same degree; $\left.[\alpha]_{\mathrm{D}}^{20}+1.6\left(c 0.92, \mathrm{CHCl}_{3}\right)\right\}$.

Experimental

(2R,3S)-1-tert-Butyldimethylsilyloxy-3-[2'-(1,2-dihydro-4-methoxybenzocyclobuten-1-yl)ethyl]-4-methylpent-4-en-2-ol 7 and (2S,3S)-3-tert-Butyldimethylsilyloxymethyl-6-(1,2-dihydro-4-methoxybenzocyclobuten-1-yl)-2-methylhex-1-en-4-ol 6.-To a stirred suspension of CuI ($0.257 \mathrm{~g}, 1.345 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of isopropenylmagnesium bromide in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}\left(4: 1 ; 25 \mathrm{~cm}^{3}\right.$) [prepared from Mg $(1.15 \mathrm{~g}, 47.3 \mathrm{mmol})$ and isopropenyl bromide $\left(3.1 \mathrm{~cm}^{3}, 32.5\right.$ $\mathrm{mmol})$] at $-21^{\circ} \mathrm{C}$. The mixture was stirred for a further 10 min , after which a solution of the epoxide $5(2.57 \mathrm{~g}, 7.39 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added to it at $-21^{\circ} \mathrm{C}$. Stirring was continued for 20 h at the same temperature, after which the reaction mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with saturated brine and worked up. The residue obtained by this process was chromatographed with hexane- $\mathrm{Et}_{2} \mathrm{O}(49: 1, \mathrm{v} / \mathrm{v})$ to give the alcohol $7(2.1 \mathrm{~g}, 68 \%$) as an oil (Found: C, $70.4 ; \mathrm{H}, 9.85$. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 70.72 ; \mathrm{H}, 9.81 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $3500(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.89$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), $1.55(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CMe}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe})$, 4.72 and $4.78\left(2 \mathrm{H}\right.$, each br s, $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$ and $6.67-7.02(3 \mathrm{H}, \mathrm{m}$, ArH); $m / z 390\left(\mathrm{M}^{+}\right)$.

The second fraction afforded the alcohol $6(0.62 \mathrm{~g}, 21 \%)$ as an oil (Found: $\mathrm{C}, 70.7 ; \mathrm{H}, 9.9 . \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}$ requires C , $70.72 ; \quad \mathrm{H}, \quad 9.81 \%$); $\quad v_{\max }($ neat $) / \mathrm{cm}^{-1} \quad 3480 \quad(\mathrm{OH}) ; \quad \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.70$ (3 H , br s, $\mathrm{C}=\mathrm{CMe}$), 3.77 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 4.76 and 4.86 (2 H , each br $\mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}$) and 6.67-7.71 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 390$ $\left(\mathrm{M}^{+}\right)$.
(4R, $\left.3^{\prime} \mathrm{S}, 3 \mathrm{a}^{\prime} \mathrm{S}, 9 \mathrm{~b}^{\prime} \mathrm{R}\right)$-trans-4-($2^{\prime}, 3^{\prime}, 3 \mathrm{a}^{\prime}, 4^{\prime}, 5^{\prime}, 9 \mathrm{~b}^{\prime}$-Hexahydro- $\mathbf{7}^{\prime}$ -methoxy-3a'-methyl-1'H-cyclopenta[a]naphthalen-3'-yl)-2,2-dimethyl-1,3-dioxolane 11.-A stirred solution of the benzocyclobutene $9(1.14 \mathrm{~g}, 3.61 \mathrm{mmol})$ in ODB ($360 \mathrm{~cm}^{3}$) was refluxed for 13 h and then evaporated. The residue was chromatographed with hexane-AcOEt $(17: 3, v / v)$ to give the des-AB-trienic steroid $11(1.13 \mathrm{~g}, 98 \%)$ as prisms, m.p. $78-79^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{20}-1.4$ (c 1.01, CHCl_{3}) (Found: $\mathrm{C}, 76.0$; $\mathrm{H}, 9.0 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 75.91 ; \mathrm{H}, 8.92 \%\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.57(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.38$ and $1.40\left(6 \mathrm{H}\right.$, each s, $\left.\mathrm{CMe}_{2}\right)$, $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe})$ and 6.67-6.93 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z 316 $\left(\mathrm{M}^{+}\right)$.

10

11

Scheme 1 Reagents and conditions: i, $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{LiCl}$, DBU, MeCN, room temp., 1 h ; ii, DIBAH, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, $\mathrm{Bu}^{t} \mathrm{OOH}, \mathrm{Ti}\left(\mathrm{OPr}^{i}\right)_{4},(+)$-L-diisopropyl tartrate, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}, 14 \mathrm{~h}$; iv, TBSCl, DMAP, imidazole, DMF, room temp., $2 \mathrm{~h} ; \mathrm{v}$, isopropenylmagnesium bromide, CuI, THF- $\mathrm{Et}_{2} \mathrm{O}$, $-21{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$; vi, $\mathrm{Bu}_{4} \mathrm{NF}$. THF, room temp., 12 min ; vii, 2,2dimethoxypropane, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 3 h ; viii, $\mathrm{ODB}, 180^{\circ} \mathrm{C}$, 13 h (DBU $=1,8$-diazabicyclo[5.4.0]undec-7-ene, DMF $=$ dimethylformamide, $\mathrm{THF}=$ tetrahydrofuran, $\mathrm{CSA}=$ camphorsulfonic acid, ODB $=o$-dichlorobenzene)

References

1 A. A. Akhrem and Y. A. Titov, Total Steroid Synthesis, Plenum Press, New York, 1970; Terpenoids and Steroids, The Chemical Society, London, vols. 1-12; R. T. Blickenstaff, A. C. Ghosh and G. C. Wolf, Total Synthesis of Steroids, Academic Press, New York, 1974.
2 J. E. Baldwin, O. W. Lever, Jr. and N. R. Tzodikov, J. Org. Chem., 1976, 41, 2312; V. Van Rheenen and K. P. Shephard, J. Org. Chem., 1979, 44, 1582; R. M. Moriarty, L. S. John and P. C. Du, J. Chem. Soc., Chem. Commun., 1981, 641; D. H. R. Barton, W. B. Motherwell and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1981, 774; L. Nédélec, V. Torelli and M. Hardy, J. Chem. Soc., Chem. Commun., 1981, 775; D. H. R. Barton, W. B. Motherwell and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1982, 551; A. R. Daniewski and W. Wojciechowska, J. Org. Chem., 1982, 47, 2993; D. Van Leusen and A. M. Van Leusen, Tetrahedron Lett., 1984, 25, 2581; Y. Tamura, T. Yakura, J. Haruta and Y. Kita, Tetrahedron Lett., 1985, 26, 3837; M. Fetizon, P. Goulaouic and I. Hanna, Tetrahedron Lett., 1985, 26, 4925; I. Nitta, S. Fujimori and H. Ueno, Bull. Chem. Soc. Jpn., 1985, 58, 978; I. Nitta, S. Fujimori, T. Haruyama, S. Inoue and H. Ueno, Bull. Chem. Soc. Jpn., 1985, 58, 981 ; I. Nitta, T. Haruyama, S. Fujimori, S. Inoue and H. Ueno, Bull. Chem. Soc. Jpn., 1985, 58, 1081; Y. Horiguchi, E. Nakamura and I. Kuwajima, J. Org. Chem., 1986, 51, 4323; J. Am. Chem. Soc., 1989, 111, 6257.
3 T. Kametani, M. Aizawa and H. Nemoto, J. Chem. Soc., Perkin Trans. 1, 1980, 2793; G. Stork and E. W. Logusch, J. Am. Chem. Soc., 1980, 102, 1218; G. Stork, G. Clark and C. S. Shiner, J. Am. Chem. Soc., 1981, 103, 4948; G. Stork and D. H. Sherman, J. Am. Chem. Soc., 1982, 104, 3758; G. Stork, J. D. Winkler and C. S. Shiner, J. Am. Chem. Soc., 1982, 104, 3767; B. B. Snider and T. C. Kirk, J. Am. Chem. Soc., 1983, 105, 2364; F. E. Ziegler and T.-F. Wang, J. Am. Chem. Soc., 1984, 106, 718; F. E. Ziegler and H. Lim, J. Org. Chem., 1984, 49, 3278.

4 L. O. Randall and J. J. Selitto, Endocrinology, 1958, 62, 693; A. Boris and R. H. Stevens, Endocrinology, 1966, 78, 549; G. Znati and M. E. Wolf, J. Med. Chem., 1973, 16, 90; H. Morales-Alanis, M. J. Brienne, J. Jacques, M.-M. Bouton, L. Nédélec, V. Torelli and C. Tournemine, J. Med. Chem., 1985, 28, 1796.

5 For our recent studies in this field, see: (a) H. Nemoto, M. Nagai, Y. Abe, M. Moizumi, K. Fukumoto and T. Kametani, J. Chem. Soc., Chem. Commun., 1985, 1316; J. Chem. Soc., Perkin Trans. 1, 1987, 1727; (b) H. Nemoto, M. Moizumi, M. Nagai, K. Fukumoto and T. Kametani, J. Chem. Soc., Perkin Trans. 1, 1988, 885; (c) H. Nemoto, M. Ando and K. Fukumoto, Tetrahedron Lett., 1990, 31, 6205; (d) H. Nemoto, N. Matsuhashi, M. Imaizumi, M. Nagai and K. Fukumoto, J. Org. Chem., 1990, 55, 5625; (e) H. Nemoto, A. Satoh, M. Ando and K. Fukumoto, J. Chem. Soc., Chem. Commun., 1990, 1001; J. Chem. Soc., Perkin Trans. I, 1991, 1309.
6 T. Kametani, H. Matsumoto, H. Nemoto and K. Fukumoto, J. Am. Chem. Soc., 1978, 100, 6218.
7 M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush and T. Sakai, Tetrahedron Lett., 1984, 25, 2183.

8 T. Suzuki, H. Saimoto, H. Tomioka, K. Oshima and H. Nozaki, Tetrahedron Lett., 1982, 23, 3597; A. Pfaltz and A. Mattenberger, Angew. Chem., Int. Ed. Engl., 1982, 21, 71; M. A. Tius and A. H. Fauq, J. Org. Chem., 1983, 48, 4131; J. M. Chong, D. R. Cyr and E. K. Mar, Tetrahedron Lett., 1987, 28, 5009; T. Skrydstrup, M. Bénéchie and F. Khuong-Huu, Tetrahedron Lett., 1990, 31, 7145; G. A. Molander and K. L. Bobbitt, J. Org. Chem., 1992, 57, 5031. For reviews, see: R. M. Hanson, Chem. Rev., 1991, 91, 437.

Paper 3/04601J
Received 2nd August 1993
Accepted 2nd August 1993

[^0]: \dagger All new substances exhibited spectroscopic data [IR, ${ }^{1} \mathrm{H}$ NMR (500 MHz) and mass spectrometry] in accord with the assigned structure and provided acceptable combustion or high resolution mass spectral data.
 \ddagger The enantiomeric excess of the epoxy alcohol 4 was determined by comparing the ${ }^{1} \mathrm{H}$ NMR (500 MHz) of the methoxy(trifluoromethyl)phenylacetyl (MTPA) esters derived [MTPA acid, dicyclohexylcarbodiimide (DCC), 4-N,N-dimethylaminopyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 22 h] from 4 and the corresponding racemic epoxy alcohol which was prepared by epoxidation $\left[\mathrm{Bu}^{t} \mathrm{OOH}, \mathrm{VO}(\mathrm{acac})_{2}(\mathrm{acac}=\right.$ pentane-2,4-dionato), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$] of 3 .
 \S We could not detect any other stereoisomers corresponding to 6 and 7. For recent studies on this type of nucleophilic addition of various types of reagents to glycidol and related 2,3-epoxy alcohols, see ref. 8 .

